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We calculate single-particle properties of short-range-ordered stripe states using Monte Carlo simulations of
collective charge-density wave �CDW� order parameters coupled to fermions on a 2d square lattice. For
superconducting bond-centered stripes with a d-wave form factor, we find a valence-bond “glass” which
coexists with low-energy quasiparticles featuring interference phenomena, in agreement with recent scanning
tunneling microscopy �STM� measurements on underdoped Bi2Sr2CaCu2O8+� and Ca2−xNaxCuO2Cl2. Together
with earlier work, our calculations provide a link between CDW signatures seen in STM and those in magnetic
neutron scattering.
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I. INTRODUCTION

Charge-density wave �CDW� phenomena have been de-
tected in a number of superconducting cuprates. Most promi-
nent are the unidirectional spin and charge modulations,
termed “stripes,” in La2−xBaxCuO4 and La2−xSrxCuO4 �with
Nd or Eu codoping�, being strongest near 1/8 doping.1–5

In other cuprates, notably Bi2Sr2CaCu2O8+� and
Ca2−xNaxCuO2Cl2, scanning tunneling microscopy �STM�
measurements have found signatures of short-range charge
order.6–9

Remarkably, the existence of stripe states was postulated
in early theory work on the Hubbard model,10–12 far before
experimental indications for such phases were found. Later
on, ideas of frustrated phase separation as driving force of
stripe formation were worked out in detail,13 and CDW quan-
tum criticality was proposed as source of both non-Fermi-
liquid behavior and superconductivity.14 For the vast number
of subsequent theoretical activities we refer to the review
articles of Refs. 15 and 16.

While the role of charge order for the overall properties of
cuprates is under debate, a plausible hypothesis is that ten-
dencies toward charge ordering are common to underdoped
cuprates.13–18 Even compounds not displaying long-range or-
der are influenced by the proximity to a charge-ordered state.
In particular, impurities will act as random-field pinning cen-
ters for the collective charge modes, leading to static short-
range order �as observed in STM�.15,19,20 Moreover, charge
order will influence the magnetic excitations, believed to be
the pairing glue:21 it was recently shown22 that short-range-
ordered stripes give rise to an “hourglass” magnetic
spectrum, very similar to that observed in neutron-scattering
experiments both on La2−xBaxCuO4 �Ref. 23� and
YBa2Cu3O6+�.24

While neutron and x-ray scattering were used to detect
superstructure modulations from long-range charge order,1,2,5

there is relatively little information on the electronic struc-
ture of stripe states. Both STM and photoemission indicate
the presence of coherent, gapless nodal quasiparticles �QP�
in �1,1� direction, whereas antinodal QP in �1,0� direction
are rather incoherent and likely dominated by charge
ordering.8,25,26 For the compound La2−xBaxCuO4, a

d-wave-like gap was recently reported,27 which may be at-
tributed to static stripes or to fluctuating superconductivity.28

In this paper, we present a detailed study of local elec-
tronic properties of disordered stripe states in cuprates, using
a CDW order-parameter approach plus a mean-field theory
for the single-particle dynamics. A central ingredient is the
d-wave-like form factor of the charge order,29 which causes
the modulations to be located primarily on Cu-O-Cu bonds
instead of on Cu sites. Our results reproduce central features
of the STM data of Refs. 9 and 26. As we employ the same
model for the collective CDW modes as in Ref. 22, used
there to calculate spin excitations in the presence of disor-
dered stripes, our results provide a link between different
probes of stripe physics.

The remainder of the paper is organized as follows. In
Sec. II we describe the employed model together with the
approximations and their physical background. Section III
presents the main numerical results, with focus on describing
the STM data of Refs. 9 and 26. A discussion and conclusion
closes the paper.

II. PHENOMENOLOGICAL MODELING

Our phenomenological model consists of coupled CDW
fluctuations and electrons, with the action S=S�+Sc+Sc�.
To account for the strong commensuration effects observed
experimentally, all fields will be defined for discrete lattice
coordinates.30

A. Lattice CDW order-parameter theory

The CDW part S� captures the tendency toward stripe
ordering and is identical to that of Ref. 22: two complex
fields �x,y�r� ,�� represent the amplitude of horizontal and ver-

tical stripe order at wave vectors K� x,y, such that the real field

Qx�r��=Re �x�r��eiK� x·r� �similarly for Qy� measures the modu-
lation of both the charge density and bond order �i.e., kinetic
energy or pairing amplitude�, for r� on sites and bonds, re-
spectively. Then, ���r� j�=Qx+Qy is the deviation of the local
hole density from its spatial average. We restrict our atten-

tion to K� x= �� /2,0� and K� y = �0,� /2�, i.e., a charge modula-
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tion period of four lattice spacings.6,7 The complex phase of
�x,y represents the sliding degree of freedom of the density
wave.

Fluctuations of the charge order are described by a
�4-type theory S� for the O�4� field �= ��x ,�y�. The precise
form of S� will determine the character of the fluctuations

�amplitude vs phase�. The STM data of Ref. 6, with modu-
lations present everywhere in real space, point toward small
amplitude fluctuations; in addition, the calculated spin-
fluctuation spectra of Ref. 22 were only compatible with ex-
periment under the assumption of dominant phase fluctua-
tions. Hence, we employ

S� =� d��
i

�����ix�2 + ����iy�2 + sx��ix�2 + sy��iy�2 + c1x
2 ��ix − �i+x,x�2 + c2x

2 ��ix − �i+y,x�2 + c1y
2 ��iy − �i+x,y�2 + c2y

2 ��iy − �i+x,y�2

+ u1�i
4 + u2�i

6 + v��ix�2��iy�2 + w��ix
4 + �ix

�4 + �iy
4 + �iy

�4�� , �1�

with �ix��x�r�i� and �i
2���ix�2+ ��iy�2. A combination of

u1�0 and u2�0 suppresses amplitude fluctuations of �. The
quartic v��x�2��y�2 term regulates the repulsion or attraction
between horizontal and vertical stripes; we shall mainly em-
ploy v�0 leading to stripelike order �whereas v�0 results
in checkerboard structures�. The phase-sensitive w term pro-
vides commensurate pinning and selects bond-centered �in-
stead of site-centered� stripes9,22 for w�0.

B. Fermions

To calculate electronic properties in the presence of col-
lective charge modes, we start from a BCS model of fermi-
ons on the square lattice of Cu atoms,31

Sc =� d��
k�

�c̄k�	��� + 
k� − ��ck�	 + �k��ck�↑c−k�↓ + c.c.�� ,

�2�

where summation over spin indices 	 is implied. The single-
particle dispersion consists of hopping to first, second, and
third neighbors, with t=−0.15 eV, t�=−t /4, t�= t /12. The
chemical potential is �=−0.12 eV, leading to a hole
doping of 	11%. The pairing is of d-wave type, �k�

=�0�cos kx−cos ky� with �0=24 meV.
The coupling to the collective CDW fields Qx,y reads

Sc� =� d��
i

�1Qx�r�i�c̄i	ci	 + �2Qx�r�i+x/2�c̄i	ci+x,	

+ 3Qx�r�i+y/2�c̄i	ci+y,	 + 4Qx�r�i+x/2�ci↑ci+x↓

+ 5Qx�r�i+y/2�ci↑ci+y↓ + c.c.� + �x ↔ y�� �3�

with Qx�r�i+x/2�= �Qx�r�i�+Qx�r�i+x�� /2. The coupling constants
1. . .5 decide about the electronic structure of the CDW state,
by implementing modulations of charge densities and bond
kinetic and pairing energies. In the simplest picture, stripes
correspond to modulations in the on-site charge densities.
Those are induced by 1 and lead to a nearly k�-independent
�s-wave� CDW form factor �2�k��= 
c

k�+K� ,	

†
ck�	�.29,31 However,

local ordering can instead be dominated by physics on

Cu-O-Cu bonds: stripe formation is driven by the competi-
tion between kinetic and magnetic energies, both living on
bonds.32–34 We have recently argued29 that such a bond-
dominated stripe state will have modulations in 
ci	

† ci+�,	�
with locally different signs on horizontal and vertical bonds,
implying a strong d-wave component of �2�k�; see Fig. 1 of
Ref. 29. Modulations on bonds are induced by 2. . .5, with the
d-wave character encoded, e.g., in 2=−3.

A few remarks are in order: in the advocated model, Eqs.
�1�–�3�, correlation effects are included via 
k� being a renor-
malized quasiparticle dispersion and via Qx,y representing
collective CDW tendencies, while genuine Mott physics is
absent. Dispersion renormalizations are standard in mean-
field theories of correlated electrons; here we refrain from a
self-consistent calculation of the dispersion and instead use
plausible hopping parameters extracted from photoemission
experiments. The separation of degrees of freedom into qua-
siparticles and collective CDW fields, both with full spatial
or momentum dependence, is phenomenological and cannot
be rigorously justified. However, e.g., in the context of elec-
trons interacting with antiferromagnetic fluctuations, this has
proven to be a fruitful route of investigation.35

C. Observables

STM experiments determine the spatially resolved local
density of states �LDOS�, ��r� ,E�, up to an r�-dependent tun-
nel matrix element �which depends on the set-point
conditions9,26�. To separate physical modulations from set-
point effects, the LDOS ratios

Z�r�,E� =
��r�,E�

��r�,− E�
,

R�r�,E� =

�
0

E

d���r�,��

�
−E

0

d���r�,��
�4�

have been used. In a weakly doped Mott insulator, both Z
and R �measuring spectral particle-hole asymmetry� can be
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shown to be proportional to the hole density.36,37 In Ref. 9,
spatial modulations were observed in R�r� ,E�. In the follow-
ing, we shall assume that these reflect modulations in the
hole density.37,38

D. Perfect CDW order

Perfectly ordered CDW states are described by Sc+Sc�,
with �x,y taken to be constant. From the diagonalized fermi-
onic Hamiltonian all electronic properties can be obtained.

Sample results for the real-space densities of different
types of CDW are displayed in Fig. 1. Here, �x= �1+ i� /�2,
�y =0 for the bond-centered stripes in panels �a� and �b�,
while �x=�y = �1+ i� /�2 for the checkerboards in panels �c�
and �d�. The couplings  were taken to induce s-wave-like
�panels �b� and �d�� or d-wave-like �panels �a� and �c��
modulations, and the overall  amplitude was chosen such
that the resulting modulation of fermionic densities is about
30%–40%. To facilitate comparison with STM data,9 which
show a strong modulation on the bonds of the CuO2 plane,39

we included the bond charge densities 
ci	
† ci+�,	+H.c.� �i.e.,

kinetic energies� in Fig. 1—those are shown in between the
square-lattice sites.40 Clearly, Fig. 1�a� with d-wave stripes is
most compatible with experiment.9

E. Pinning and adiabatic approximation

The treatment of Sc+S�+Sc� requires additional input.
Pinning is important especially in the disordered phase of S�:
quenched disorder �e.g., from dopant impurities� acts as a
random field and renders static a short-range-ordered stripe
configuration. In such a situation, the electronic properties
can be approximately calculated by diagonalizing Sc+Sc�

for fixed static configurations of �x,y. We generate these from
classical lattice Monte Carlo �MC� simulations of S�, using a
standard Metropolis algorithm at a finite effective tempera-
ture �T=1� in a regime where the stripe correlation length is
of order �	10.41

The numerical procedure parallels that of the adiabatic
approximation of Ref. 22, with the difference that the ingre-
dient of pinning is crucial to obtain a static signal in STM.
�The presence or absence of pinning was irrelevant to the
finite-frequency spin fluctuations described in Ref. 22.� In
contrast to earlier work dealing with fermionic properties in

the presence of disordered stripes,42 our modeling imple-
ments the d-wave bond character, and it properly describes
short-range order via S� �Eq. �1��; i.e., stripe segments coex-
ist with checkerboard domain walls.19,20,22

F. Choice of parameters and validity of approximation

The parameters of Sc+Sc�, Eqs. �2� and �3�, used in our
simulations are taken as in the static-stripe calculation above;
i.e., for the fermionic sector we use values for t, t�, t�, and �,
which are standard in the BCS mean-field description of cu-
prates, and the couplings  are taken as in Fig. 1�a�.

The CDW part of the action, S� �Eq. �1��, is designed to
capture the complicated nonuniversal physics of the strongly
correlated CDW formation on the lattice scale. The combi-
nation of sx,y, u1, and u2 decides about the importance of
amplitude versus phase fluctuations of the CDW �Ref. 22�;
we have used sx=sy =−4. . .−3, u1=−1.15, u2=0.1. Choosing
v=0.2 prefers stripes over checkerboards, but allows for
some checkerboard structure between stripe domains.22 Fi-
nally, w=0.05 is taken for a moderate commensurate lattice
pinning toward bond-centered stripes. The precise values of
the mass s and the gradient c were used to tune the CDW
correlation length �, which was between 10 and 30 in our
simulations. Note that an overall scale factor in S� is free
and determines the typical amplitude of � which we have
normalized to unity. The S� parameters here are identical to
those used in Figs. 1a and 2a of Ref. 22 for the description of
the spin excitations of fluctuating stripes. Moreover, the
charge configurations generated from the MC simulations vi-
sually match the STM results in the sense that short and
medium stripe segments coexist with checkerboard-like do-
main walls. This property is robust with respect to parameter
changes of 20% and more, provided that the correlation
length � is kept fixed. As we employ classical MC simula-
tions for S�, with time gradients absent, the parameters can-
not be translated directly into physical energies or velocities.

Our approach assumes that a mean-field picture of both
superconductivity and charge order is a reasonable starting
point for the description of cuprates. The adiabatic approxi-
mation neglects inelastic processes and stripe dynamics,
which can be justified if the latter is slow �compared to the
observed fermions�, as happens in the proximity to a CDW
ordering transition. Thus, the approximation is invalid for
energies below a typical stripe fluctuation frequency; for
strong impurity pinning this scale is small or zero.41 The
quasiparticle picture in cuprates may break down at elevated
energies; as far as this happens due to inelastic physics, it is
not captured by our approach �while some elastic disorder
physics is captured�.

Further, we assume that dimerization and bond order are
the driving forces behind stripe ordering,22,34 whereas mag-
netic long-range order is less important. For simplicity, we
therefore neglect both order and fluctuations in the triplet
channel. Note that this does not mean that we ignore local-
moment physics entirely, but instead we assume that those
moments form singlet valence bonds, which is accounted for
by modulated hoppings �2,3� in Sc� �Eq. �3��. The coupling
to magnetic fluctuations will contribute to the broadening

FIG. 1. �Color online� Local densities for ordered CDW states,
calculated from Sc+Sc� for constant �. The figures show both site
and bond densities, 
1−ci	

† ci	� and 
ci	
† ci+�,	+H.c.� �Ref. 40� for 82

Cu sites; black squares are centers of CuO2 plaquettes. �a� Stripes
with 1=0, 2=−3=0.03, −4=5=0.007 �d-wave�. �b� Stripes
with 1=0.022, 2. . .5=0 �s-wave�. �c� Checkerboard �d-wave as in
�a��. �d� Checkerboard �s-wave as in �b��.
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primarily of antinodal quasiparticles,43 but a calculation in-
cluding spatial disorder and inelastic processes is beyond the
scope of the present paper.

III. NUMERICAL RESULTS

We now turn to the numerical results obtained from Sc
+S�+Sc� for short-range-ordered stripes.

A. Local densities

Figure 2 displays the order-parameter field �Qx+Qy� to-
gether with the resulting fermionic charge density, the LDOS
��r� ,E�, and Z�r� ,E� at a high energy of 0.3 eV, for one fixed
�x,y configuration41 for a d-wave coupling in Sc�. The stripe
modulation, being prominent on the bonds, leads to a large
contrast in Fig. 2�b�, while the contrast in both the site-
LDOS � and Z �Figs. 2�c� and 2�d�� is weaker. �Both � and Z
show strong modulations around the gap energy; see Fig. 5
below.� The result in Fig. 2�b� has a striking similarity to the
“glassy” structures in Figs. 3 and 4 of Ref. 9. In particular,
the modulation locally breaks the C4 rotation symmetry
down to C2 and is primarily located on the Cu-O-Cu bonds.
The latter fact—which originates in the d-wave form
factor—can be nicely seen in the Fourier-transformed den-
sity, Fig. 3. Stripe order is manifest in peaks at �� /2,0�,
�0,� /2� and �3� /2,0�, �0,3� /2�, with the signal at
�3� /2,0� being much stronger compared to �� /2,0�
�whereas for s-wave stripes the peaks are roughly equal in
intensity�. Again, this is in agreement with STM data; see
Fig. 6 of Ref. 9.

We note that the present comparison between theory and
experiment does not easily allow deducing for the amplitude
of the actual modulations: the only observables free of set-
point effects are Z and R. However, a reliable calculation of

these has to cope with Mott physics not included in our
model.38 A rough estimate, however, relates the experimen-
tally observed R contrast of 	�30% to a bond modulation
of similar magnitude.

B. Nodal quasiparticles and quasiparticle interference

One outstanding feature of the STM results on under-
doped Ca2−xNaxCuO2Cl2 is the presence of quasiparticle in-
terference �QPI� features in the low-energy spectra, in a situ-
ation where the high-energy spectra are dominated by
period-4 modulations.26 Our calculations qualitatively repro-
duce this physics. For QPI to occur, we have to add realistic
disorder as source of QP scattering: following Ref. 44, we
use a combination of 2% extended potential scatterers
�strength 40 meV, size 1.2�, 5% extended pairing scatterers
�strength �0, size 1.5�, and 0.2% pointlike unitary scatterers
�strength 2.5 eV�. The real-space results of such a calculation
are displayed in Fig. 4. Both the LDOS and the Z map at
higher energies are clearly dominated by stripe segments,
whereas the signal below 	25 meV shows the typical QPI
modulations �compare, e.g., Fig. 3c of Ref. 26�. Extracting
the scattering wave vectors from the Fourier transform of our
data �not shown� is difficult due to the small system size; the
only unambiguous peak is at the so-called q7 wave vector
�corresponding to the diagonal modulations in Z at low E,
Fig. 4�.

We point out two features of our results. �i� The Z map is
more sensitive to QPI than the LDOS, because, to leading
order, QPI modulations at positive and negative E are an-
tiphase, while stripe modulations are in-phase. Nevertheless,
the strong period-4 modulations seen in the experimental
low-energy LDOS �Ref. 26� are likely due to set-point ef-
fects. �ii� Real-space localization of antinodal QP cannot be
made responsible for the loss of QPI at higher E. We have
calculated the inverse participation ratio �not shown� as an
indicator of localization, and have observed no localization
signatures on scales up to several � �while these length scales
are sufficient to observe QPI�.

FIG. 2. �Color online� Local observables for pinned short-range-
ordered stripes � parameters as in Fig. 1�a�, correlation length
�	10�, showing 202 Cu sites of the 642 sample. �a� Order param-
eter field Qx+Qy. �b� Local density �including bonds� as in Fig. 1.
�c� LDOS at −0.3 eV. �d� Z�r� ,E� at 0.3 eV. The arrows mark the
rows or columns along which the LDOS is shown in Fig. 5.

FIG. 3. �Color online� Fourier-transformed local density �from
sites and bonds �Ref. 40�� for short-range-ordered stripes, obtained
from averaging 40 MC configurations on a 642 lattice. Left: 1=0,
2=−3=0.03, −4=5=0.007 �d-wave�. Right: 1=0.022,
2. . .5=0 �s-wave�. The dark/light �red/green� arrows indicate the
peaks at �� /2,0� and �3� /2,0�. �The strong peaks at the zone
boundary arise from artificially setting the density to zero in the
plaquette centers.�
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More generally, the compatibility of stripes with long-
lived nodal QP has been pointed out in the past.29,34,45–47 For
small stripe amplitude, this already follows from the fact that
the ordering wave vector Q does not connect the nodal
points.34,46 In our case, nodal QP survive even for large
stripe amplitude due to the d-wave character of the charge
order �provided that the s-wave component remains small�.29

Within our simulations, the survival of coherent nodal QP
in the presence of disordered stripes is also seen in the LDOS
spectra in Fig. 5, taken along two different line cuts indicated
in Fig. 2. While strong inhomogeneities occur at elevated
energies, in particular near the gap energy �note the period-4
modulation in Fig. 5�b� around −50 meV�, the low-energy
part of the LDOS is essentially homogeneous,47 again in
striking similarity to STM data.8,9 �A detailed comparison of
our spectra with experiment reveals several differences,
which we believe to be related to Mott physics not captured
here.�

IV. CONCLUSIONS

We have determined electronic properties of short-range-
ordered stripe states, coexisting with superconductivity.

Agreement with salient features of STM experiments, in par-
ticular stripy LDOS modulations at elevated energies coex-
isting with QP interference at low energies, is found for
valence-bond stripes with d-wave-like form factor, singling
out a specific mean-field plus stripe disorder model.

As the same collective-mode description was used earlier
to model magnetic excitations in the presence of fluctuating
or disordered stripes, our calculations give a unified account
of stripe signatures seen in STM and in neutron scattering,
and strongly indicate that similar physics underlies the
modulated states observed in different underdoped cuprates.

Very recent STM experiments48 indicate that the quasipar-
ticle interference disappears not only at high energies but at a
very specific location in momentum space, approximately at
the boundary of the antiferromagnetic Brillouin zone. Such a
feature is not part of the present theory and likely requires
taking into account either antiferromagnetic fluctuations or
other precursors of strong Mott physics.
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